Loi de probabilité et variable aléatoire

Probabilités - Mathématiques STI2D/STL

Exercice 1 : Déterminer P(X=N), P(X≤M) et trouver la valeur d'une probabilité inconnue

On considère la loi de probabilité suivante :

\(x_i\)\( -10 \)\( -8 \)\( -3 \)\( 5 \)\( 8 \)\( 10 \)
\( P( X = x_i ) \)\( 0,16 \)\( 0,16 \)\( 0,28 \)\( p \)\( 0,26 \)\( 0,11 \)

Déterminer la probabilité \( P\left(X = -8 \right) \).
On donnera la réponse uniquement.
Déterminer la probabilité \( P\left(X \leq -3 \right) \).
On donnera la réponse uniquement.
Calculer la valeur de \( p \).

Exercice 2 : Déterminer les valeurs prises et la loi de probabilité à partir d'un énoncé (deux tirages avec remise)

On lance deux fois un dé équilibré à six faces. À chaque lancer, on gagne 2 € si le résultat est un nombre pair, on gagne 4 € si le résultat est un 3, et on perd 9 € dans les autres cas.
On appelle \( G \) la variable aléatoire égale au gain algébrique en euro obtenu en fin de partie.


Donner les valeurs prises par la variable aléatoire \( G \).
On donnera la liste séparée par des point-virgules. S'il n'y en a aucun, écrire Aucun.
Donner la loi de probabilité de \( G \) en complétant le tableau suivant.
On donnera les valeurs prises par la variable aléatoire dans l'ordre croissant.
{"header_left": ["\\( g_i \\)", "\\( P\\left(G=g_i\\right) \\)"], "data": [["?", "?", "?", "?", "?", "?"], ["?", "?", "?", "?", "?", "?"]]}

Exercice 3 : Calcul de probabilités simples à partir d'un tableau à double entrée

Soit le tableau à double entrée suivant:
{"header_top": ["\\(A\\)", "\\(\\overline{A}\\)", "Total"], "header_left": ["\\(B\\)", "\\(\\overline{B}\\)", "Total"], "data": [["?", 23, 36], [15, 15, "?"], [28, "?", 66]]}
Calculer la probabilité \(P(\overline{B} \cap A)\). On donnera la réponse sous la forme d'une fraction.

Exercice 4 : Loi binomiale : déterminer a et b tels que P(a <= X <= b) >= 0.95

Soit \( X \) une variable aléatoire suivant une loi binomiale de paramètres \( n = 60 \) et \( p = 0,28 \).

Déterminer deux nombres entiers \( a \) et \( b \) tels que \( P(a \leq X \leq b) \geq 0,9 \) avec \( b - a \) le plus petit possible.
On donnera la réponse sous la forme d'un couple \( (a ; b) \), par exemple : \( ( 5 ; 2 ) \)

Exercice 5 : Loi de probabilités - Tableau à compléter

On étudie un dé truqué suivant la loi de probabilité décrite dans le tableau ci-dessous.
{"header_top": ["Face 1", "Face 2", "Face 3", "Face 4", "Face 5", "Face 6"], "header_left": ["Probabilit\u00e9"], "data": [["\\dfrac{1}{4}", "2a", "4a", "5a", "3a", "4a"]]}
Calculer la valeur de \(a\).
Kwyk vous donne accès à plus de 8 000 exercices auto-corrigés en Mathématiques.
Nos exercices sont conformes aux programmes de l'Éducation Nationale de la 6e à la Terminale. Grâce à Kwyk, les élèves s'entraînent sur du calcul mental, des exercices d'arithmétique et de géométrie, des problèmes et des exercices d'application, des exercices d'algorithmique et de python, des annales du brevet des collèges et du baccalauréat. Nos exercices sont proposés sous forme de réponse libre et/ou de QCM.

Afin d'assurer un entraînement efficace et pertinent aux élèves, chaque exercice est généré avec des valeurs aléatoires. Les élèves peuvent s'entraîner grâce aux devoirs donnés sur Kwyk par leurs professeurs et aux devoirs générés par notre outil utilisant l'IA mais aussi grâce aux différents modules de travail en autonomie mis à disposition sur leur espace personnel. Pour les niveaux du collège, les élèves ont également accès à des cours constitués d'une partie théorique et d'une partie pratique.
Avec Kwyk, vous mettez toutes les chances du côté des élèves pour que les différents théorèmes, propriétés et définitions n'aient plus aucun secret pour eux.

En 2024, plus de 40 000 000 d'exercices ont été réalisés sur Kwyk en Mathématiques.
Exercices de Mathématiques : préparer les examens
Brevet des collèges | Baccalauréat
S'entraîner dans d'autres matières
Français | Physique-Chimie
False